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Abstract—In this paper, a novel approach that uses an un-
manned aerial vehicle (UAV)-carried intelligent reflector (IR) is
proposed to enhance the performance of millimeter wave (mmW)
networks. In particular, the UAV-IR is used to intelligently reflect
mmW beamforming signals from a base station towards a mobile
outdoor user, while harvesting energy from mmW signals to
power the IR. To maintain a line-of-sight (LOS) channel, a
reinforcement learning (RL) approach, based on Q-learning and
neural networks, is proposed to model the propagation envi-
ronment, such that the location and reflection coefficient of the
UAV-IR can be optimized to maximize the downlink transmission
capacity. Simulation results show a significant advantage for
using a UAV-IR over a static IR, in terms of the average data
rate and the achievable downlink LOS probability. The results
also show that the RL-based deployment of the UAV-IR further
improves the network performance, relative to a scheme without
learning.

I. INTRODUCTION

Next-generation cellular systems will inevitably rely on
high-frequency millimeter wave (mmW) communications in
order to meet the growing need for wireless capacity [1].
However, communicating at mmW frequencies faces many
challenges. One prominent such challenge is the high sus-
ceptibility of mmW links to blockage caused by common
objects, such as trees and human bodies, which can seriously
attenuate mmW signals [2]. Enabling reliable mmW links
under blockage is therefore a major barrier hindering the
deployment of mmW bands into wide-scale commercial uses.

To overcome these drawbacks of mmW, signal reflectors
have been recently proposed to bypass obstacles and prolong
the communication range [3]. In particular, by using reflectors,
a non-line-of-sight (NLOS) mmW link can be compensated by
creating multiple, connected line-of-sight (LOS) links, thus
significantly reducing the mmW channel attenuation. It has
also been shown that the use of reflectors is more appropriate
for mmW networks than conventional relay stations (RSs)
[4]. Different from traditional RSs that receive, amplify (or
decode), and forward the mmW signal, a reflector only reflects
the incident signal towards the receiver, by inducing a certain
phase shift. Therefore, reflective relaying incurs no additional
receiving noise, and is energy efficient. Due to the nature
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of reflective surfaces, the connected LOS links that pass
through one or more reflectors can share the same frequency
band, thus improving the spectrum efficiency. In particular,
an intelligent reflector (IR) that consists of a large number of
low-cost passive components can realize beamforming with
little energy cost [5]. Each IR component reflects the incident
signals, while harvesting the radio frequency (RF) energy
from the unreflected fraction of signals to power itself. By
collaboratively adjusting the phase shifts, an IR can focus
the reflected signal into a sharp beam, hence maximizing
beamforming performance gains.

Several recent works have studied the use of IRs to enhance
the performance of cellular networks such as in [3] and [6]–
[9]. In [3], the design of a passive reflector and the estimation
of the reflection gain are presented for urban mmW commu-
nications. In [6], simulations and experiments are carried out
in indoor environments to measure the transmission of passive
reflectors over mmW. The authors in [7] jointly optimized the
transmit beamforming from an access point and the reflective
beamforming in IR to maximize the received signal power
at the user equipment (UE). The authors in [8] conducted
propagation modeling of terahertz signals using reflectors.
Meanwhile, the work in [9] studied the energy efficiency of
reflector-assisted downlink communications. However, prior
works on mmW reflectors in [3] and [6] focus mainly on
experimental measurements, while the IR-related works in [7]–
[9] study cellular communications over non-mmW spectrum.
Furthermore, all of the prior works in [3] and [6]–[9] rely on
passive reflectors placed at a fixed location, which cannot cope
with the dynamic changes of mmW channels. For example, a
simple body movement of the UE can cause significant mmW
blockage and render a static IR ineffective.

Due to the blockage-prone nature of mmW signals, mobile
reflectors are more appropriate to enhance mmW communi-
cations than stationary IRs. For instance, one can employ a
UAV-carried IR (UAV-IR) that can adjust the location of the
reflector constantly, according to the changes in environment
thus maintaining persistent LOS links with both transmitter
and receiver. UAV-assisted communications have attracted
significant recent attention [10]–[12], however, no prior work
has studied the use of UAV-IRs. In particular, a UAV-IR
differs from a UAV-aided RS, due to its simpler antenna
structure and smaller power supply, which make it more
suitable for a dense communication scenario. Being embedded



Fig. 1: If the downlink channel over mmW between the BS and a
UE is blocked, a UAV-IR will be deployed to serve the NLOS UE.

onto a UAV, an IR can improve the reliability of mmW
transmissions by optimizing its location intelligently. However,
such optimization requires a precise channel state information
(CSI) of the IR-UE link. Considering the possible motion of
UAVs and UEs, as well as the blockage effect of the human
body on mmW signals, the real-time value of CSI is difficult
to obtain. Thus, to enable an efficient deployment of a UAV-
IR for mmW transmissions, the challenge of CSI estimation
must be properly addressed.

The main contribution of this paper is, thus, a novel frame-
work for effective deployment of a UAV-IR to assist mmW
downlink transmission in a dynamic environment with moving
UEs. To maintain a LOS channel, a reinforcement learning
(RL) approach [13], based on Q-learning and neural networks,
is proposed to model the propagation environment, such that
the location and reflection coefficient of the UAV-IR can be
optimized to maximize the downlink transmission capacity.
Meanwhile, we propose the use of RF energy harvesting for
self powering the IR. Simulation results show the effectiveness
of the proposed UAV-IR-based approach compared to a static
IR. To the best of our knowledge, this is the first paper that
proposes a learning-based deployment of UAV-IRs for mmW
communications with RF energy harvesting.

The rest of this paper is organized as follows. Section
II presents the system model and problem formulation. The
framework of the optimal deployment of UAV-IR is proposed
in Section III. Simulation results are presented in Section IV,
while conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular base station (BS) serving a group of
outdoor UEs via mmW frequencies over the downlink. To
compensate for the fast attenuation of mmW signals, the BS is
equipped with directional antenna arrays for beamforming. In
a LOS case, the downlink communication can be reliable and
efficient. However, when blockage happens, the propagation
attenuation of the mmW channel will substantially increase.
To improve the received power, a UAV-IR will be deployed to
assist in serving NLOS UEs.

As shown in Fig. 1, an IR replaces the direct NLOS link
with two connected LOS links, by reflecting the mmW signals
from the BS towards the UE. By equipping the IR on a UAV,
the UAV can adjust the IR’s position to maintain LOS links
with both the BS and the UE. The BS assigns the UAV
with a specific channel for control signaling. Therefore, the
UE’s feedback can be obtained via the UE-BS and BS-UAV
links to improve the parameter setting of IR reflections. The
UAV has a limited on-board energy, which restricts its service
time. In order to avoid drawing energy from the UAV, the
IR can harvest energy from the unreflected fraction of mmW
beamforming signals, and convert it into the electrical energy
via rectifiers to power itself.

The optimal beamforming at the BS side for IR-assisted
communications has been investigated in [7] and [9] without
a UAV. Here, we focus on the optimal deployment of the UAV-
IR to maximize the downlink capacity, while harvesting RF
energy to power the reflector. To address this problem, we will
first provide the model of IR-assisted downlink transmissions,
propose the net energy consumption model for the UAV-IR,
and then, present the problem formulation.

A. Channel Model and Communications Capacity

Consider a multiple-input-single-output wireless link from
the BS, reflected by the UAV-IR, to a single-antenna UE. We
assume that the BS is equipped with M ∈ N+ antennas,
and the UAV-IR consists of N ∈ N+ reflective components.
Therefore, the channels of the BS-IR link and the IR-UE
link can be denoted as H ∈ CN×M and h ∈ C1×N ,
respectively. We assume that the CSI H of the BS-IR link
is fully known to both the BS and the UAV-IR. However, due
to the susceptibility of mmW to blockage, the CSI h of the
IR-UE link will be considered as a variable.

At the UAV-IR, the incident beamforming signal from the
BS can be defined by an N × 1 vector as r = Hws, where
s represents the encoded symbol with zero mean and unit
variance, and w ∈ CM×1 is the transmission vector of linear
beamforming at the BS. After receiving r, each component in
IR combines the multi-path signals, and reflects the combined
signal by inducing a phase shift. Structurally, an IR component
is composed by an adjustable antenna and a rectifier. By
varying the impedance of the antennas, the mismatch between
the antenna structure with the carrier wave can reflect back
a portion of the incident signal, while the remaining part can
be harvested by the rectifier to assist powering the reflector.
Let N be the index set of reflective components in IR. For
each n ∈ N , we denote the phase shift of reflection as
θn ∈ [0, 2π), and the amplitude reflection coefficient by
a ∈ [0, 1). Then, the reflection coefficient of IR can be denoted
by Θ = diag(aejθ1 , · · · , aejθN ), where diag(·) is a diagonal
matrix with each diagonal element as aejθn .

Let x ∈ R3 be the location of the UAV-IR, y ∈ R3 be
the UE’s position, and ω ∈ [0, 2π) be the angle of the UE’s
position relative to the body of the human user. Due to the
possible movement and motion of the UE, the values of y
and ω may keep changing. For tractability, we assume that the



real-time values of y and ω can be updated to the UAV, via a
UE-BS uplink (control) channel and the BS-UAV control link.
Then, the received signal at the UE will be h(x,y, ω)Θr+z,
where z is the receiver noise with an average noise power
spectral density n0. The signal-to-noise ratio (SNR) of the
downlink transmission from the BS, reflected by the IR, to
the served UE can be given by:

η(x,y, ω,Θ) =
|h(x,y, ω)Θr|2

bn0
, (1)

where b is the downlink bandwidth. Here, we define a min-
imum threshold τ for the received SNR. If η < τ , the UE
cannot successfully decode any received signal. Consequently,
the capacity of the IR-assisted downlink communication can
be expressed as

c(x,y, ω,Θ) = b log2 (1 + η(x,y, ω,Θ)) . (2)

B. Energy Consumption and Harvesting of UAV-IR

To maintain a LOS link with the UE, the UAV must
frequently adjust its location, according to the UE movement.
Hence, the power consumption of a UAV-IR mainly comes
from the UAV’s hovering and mobility, while the adjustment
of the IR’s impedance loads for mmW reflections consumes a
small amount of energy. For tractability, we assume that the
powers for hovering, mobility, and reflection are all constant
values, denoted by ph, pm and pr, respectively, where pm >
ph > pr > 0. Moreover, we assume that the transmission
only happens during the hovering state, since a moving IR will
complicate the beamforming process at both the BS and the
IR side. Thus, the BS will not transmit any downlink signal,
until the location of the UAV-IR is fixed. Let vr be the UAV’s
speed, and 1vr=0 be an indicator function that equals to 1 only
when the UAV is hovering and its speed vr equals zero.

In the hovering state, while reflecting mmW signals, an IR
can harvest the RF energy from the unreflected portion of the
incident beamforming signal r, and transfer it into electrical
power via the rectifier. Let κ ∈ (0, 1) be the average energy
converting efficiency. Then, the power harvested by IR from
the beamforming signal r can be expressed by

pe(Θ) = κ‖ (I −Θ) r‖2, (3)

where I ∈ RN×N is the identity matrix. Considering the
harvested power pe(Θ) is much smaller compared with ph
and pm, it is mainly used to satisfy the reflector power pr,
such that the IR can self-power without drawing energy from
the UAV. Therefore, the net power consumption of the UAV
for providing a reflection service to a UE is

p(Θ, vr) = 1vr=0 · (ph + pr − pe(Θ)) + (1− 1vr=0) · pm.
(4)

C. Problem Formulation

We consider a dynamic process for the UAV-IR’s deploy-
ment, in which the UAV-IR tracks the movement of the
served UE, and provides downlink mmW transmissions via
the IR. The coherence time of a wireless channel is given by:

∆t = λf/ve , where λf is the carrier wavelength, and ve is
the UE’s speed. The CSI h within one coherence time ∆t
is considered to be constant. Although the higher operating
frequency at the mmW bands leads to a smaller wavelength
λf , considering a lower velocity ve of the outdoor UE in our
model, the coherence time ∆t of the mmW channel is similar
to the current macrocell service using multiple antennas [14].
Furthermore, the measurement results in [15] have shown a
slower change of the mmW channel as the beamwidth of
directional transmissions narrows. Therefore, it is possible
to group multiple coherence times to form a longer interval
∆T = k∆t, where k ∈ N+, and the UAV-IR deployment can
be optimized for each time slot ∆T , instead of ∆t.

We divide the UAV-IR deployment into a sequence of two
alternating stages: communication stage and mobility stage. In
the communication stage, the UAV-IR is hovering and provid-
ing the downlink service towards the moving UE. However,
once the UE receives an SNR η lower than the threshold τ ,
blockage occurs in the downlink, and then, the UAV-IR will
move to a new place and rebuild a LOS link for downlink
transmissions. Note that, the length of each communication
stage depends on the real-time state of the IR-UE link, while
the duration of a mobility stage is determined by the travel
distance and the speed of the UAV. Thus, both stages can last
for a multiple of ∆T .

Our goal is to jointly optimize the location and reflection
parameters of the UAV-IR, such that, before the onboard
energy E is exhausted, the total downlink transmissions that
the UAV-IR provides to the UE can be maximized, i.e.:

max
x,Θ

T∑
t=1

1vr(t)=0 · c (x(t),y(t), ω(t),Θ(t)) ·∆T (5a)

s.t. vr(t) =
‖x(t− 1)− x(t)‖

∆T
, (5b)

T∑
t=1

p(Θ(t), vr(t)) ·∆T ≤ E − ε, (5c)

0 ≤ θn(t) < 2π, ∀n ∈ N , (5d)

where T ∈ N+ is a random integer which represents the end
of the UAV’s service, and ε ∈ [0, pm∆T ) is the residual
energy in the UAV at the end of its service. For notational
convenience, hereinafter, we will only include the time index
for each variable, but omit all the other parameters.

For each slot ∆T , the optimization of the reflection coef-
ficient Θ(t) requires a precise CSI h(t) of the IR-UE link.
Due to the possible movement of UE and UAV-IR and the
blockage effect caused by the human body on mmW links,
the CSI of the IR-UE link may keep changing, and thus,
the real-time measurement is needed to determine the value
of h(t). However, it is impractical to move the UAV to all
possible locations to measure the CSI and jointly optimize the
location and the reflection coefficient, because such sweeping
search will consume significant power and time. To address
the challenge of the CSI estimation, a learning-based approach



can be applied to enable an efficient deployment of the UAV-
IR.

III. OPTIMAL DEPLOYMENT OF UAV-IR

In this section, an RL framework, based on Q-learning
and neural networks, is proposed for the UAV-IR to find
its optimal location, such that the CSI for the downlink
mmW channels can be efficiently measured, and the reflective
coefficient will be optimized accordingly to maximize the
downlink transmission capacity. The model needs no prior
knowledge of the dynamic environment, instead, it learns the
property of the environment during the service process of the
UAV-IR, based on the measurement and feedback during each
communication stage.

A. Stationary UE and UAV-IR

Prior to learning, we first consider the simple case of a
stationary UE with constant (y, ω). In this case, once the UAV-
IR fixes its location and measures the CSI of the IR-UE link, h
is considered to be constant. Let Arg(·) denote the argument
of a complex number. Then, we find the optimal reflection
coefficient Θ∗ = arg maxΘ c(Θ) that maximizes the downlink
capacity, given that the CSI h between the UAV-IR and the
UE is known, as follows.

Proposition 1. For a known CSI h, the optimal reflection
parameter that maximizes the downlink transmission in (5a)
during each time slot is Θ∗ = diag(aejθ

∗
1 , · · · , aejθ∗N ), where

θ∗n = −Arg(hnrn), ∀n ∈ N .

Proof. According to (1) and (2), it is easy to check that
maxΘ c(Θ)⇐⇒ maxΘ |hΘr|2. Meanwhile,

|hΘr| = |
N∑
n=1

ahnrne
jθn | ≤

N∑
n=1

a|hnrnejθn |. (6)

The condition for equality in (6) is that each complex com-
ponent hnrnejθn has the same argument. Without loss of
generality, let hnrne

jθn = 0,∀n ∈ N . Thus, we have
Θ∗ = diag(aejθ

∗
1 , · · · , aejθ∗N ), where θ∗n = −Arg(hnrn),

∀n ∈ N .

Therefore, given the CSI h between the UAV-IR and
the served UE, the optimal reflection coefficient Θ∗ can be
uniquely determined. Hereinafter, Θ will be considered as its
optimal value once h is available.

B. Mobile UE and UAV-IR

In the scenario of a moving UE, the CSI h of the IR-UE
link will vary constantly. When downlink blockage happens,
the UAV-IR must move to a new location and rebuild a LOS
channel to serve the UE. In order to determine the optimal
position for the UAV-IR of its next communication stage,
an RL framework, based on Q-learning and neural networks,
is proposed to learn and model the dynamic communication
environment.

In each communication stage, the UAV-IR will acquire the
UE’s location, and measure the CSI of the IR-UE link. After

transmissions with an optimal reflection coefficient, the UAV-
IR will get a feedback of the current downlink capacity, which
will be used for the environment modeling. Once blockage
occurs in the downlink, the optimal location, where the UAV-
IR will be deployed during the next communication stage, can
be determined, based on the current environment model. In the
framework of RL, the CSI h(t) of the IR-UE channel is called
the environment, the UAV is the agent who can take action
x(t) that changes the environment from one state to another,
and a reward is defined as the downlink data amount during
the current time slot, as

r(t) = 1vr(t)=0c(t)∆T. (7)

However, since the UE is mobile, the environment can
vary gradually, even without any action from the UAV. This
environment is called nonstationary. In order to understand
the nonstationary property of h and identify the change
caused by the human user, the UE’s movement pattern must
be properly modeled. Given a movement history Y t =
{(y(0), ω(0)), · · · , (y(t), ω(t))} during the past time slots, the
probability that the UE will arrive at (y, ω) in the next ∆T
can be formulated by f(y, ω|Y t) = N(µ,Λ|Y t), where N(·)
denotes a Gaussian model with the mean µ = y(t)+ve(t)∆T
and the variance Λ = Var(Y t). Based on f(·|Y t), a Markov
decision process (MDP) can be formulated to predict the future
movement of the served UE.

In order to capture the action of the UAV-IR, a policy
πf (x|h,y, ω) is introduced to represent the probability that
the UAV moves towards x, given the IR-UE CSI h, the
location (y, ω) of the UE, and the prediction model f . The
main objective of this learning approach is to determine the
best policy, such that UAV can be deployed onto the optimal
location x that maximizes the downlink transmission over a
long term. In order to quantify the potential of each location
x to provide a reliable downlink service, we define the value
function for time t as

Qt(h(t),x(t+K),y(t), ω(t)) =

E

(
T∑

i=t+K

γi−t−Kr(i) | πf (x|h,y, ω)

)
,

(8)

which is the expected cumulative reward that the UAV-IR can
achieve by serving the UE from location x(t + K) during
the next communication stage, given a current CSI h(t) and
a current UE location (y(t), ω(t)). The parameter K is the
duration of the mobility stage, such that ‖x(t)−x(t+K)‖ =
vmax
r · K · ∆T . γ ∈ [0, 1] is the discount ratio of a future

reward in the current estimation, and its value depends on the
prediction accuracy of f to forecast the future movement of
the served UE. Under a perfect prediction, γ = 1 and the
value function Q will be equivalent to the objective function
in (5). Given the value function in (8), the optimal policy π
to maximize the expected cumulative rewards, is given as

x(t+K) = arg max
x

Qt(h(t),x,y(t), ω(t)), (9)



which shows the optimal location where the UAV-IR should
be deployed during the next communication stage, based on
the current environment information.

Once the UAV-IR arrives at x(t + K), the UE’s location
(y(t + K), ω(t + K)) and its movement pattern f(·|Y t+K)
will be updated. Then, the UAV-IR can measure the CSI h(t+
K), and set the reflection parameter Θ∗(t+K) according to
Proposition 1. Consequently, a reward r(t+K) will be given to
the UAV-IR. The new information about the environment can
be used to update the value function, based on the Q-learning
algorithm, via

Qt+K(h(t),x(t+K),y(t), ω(t)) =

(1− β) Qt(h(t),x(t+K),y(t), ω(t)) + β [r(t+K)

+ γmax
x

Qt(h(t+K),x,y(t+K), ω(t+K))],

(10)
where β ∈ (0, 1] is the learning rate.

However, given an infinite value space of (h,x,y, ω), it
is impossible to define the value function Q for any possi-
ble tuple by measurement. Therefore, our goal is to find a
parametrized value function Q̃(·|φ) to approximate the real
value function Q(·). In order to find a good-enough approxi-
mation, a deep neural network, based on the long short-term
memory architecture [16], can be applied to train the parameter
φ. Note that, it is possible for the Q-learning algorithm
to converge to a local optimal value function Q(·|φ∗), if
the service time T of the UAV-IR is long enough and the
UE’s movement pattern is properly modeled [13]. The deep
RL algorithm for the efficient deployment of the UAV-IR is
summarized in Algorithm 1.

Algorithm 1 Deep RL Algorithm for the UAV-IR deployment
Initialize the location x0, the onboard energy E0, the value

function Q̃(h,x,y, ω|φ0), and the prediction model f0(y, ω).
For t = 1, · · · , T

A. If vr(t) > 0, UAV continues moving;
B. If vr(t) = 0,

1. Update the UE’s location (y(t), ω(t)), the prediction model
f(y, ω|Y t), and measure the CSI h(t).

2. Based on Proposition 1, optimize the reflection parameter
by Θ(t) = arg maxΘ c(x(t),y(t), ω(t),Θ).

3. Receive the reward r(t). If η(t) ≥ τ , hover and x(t+1) =
x(t); Otherwise, UAV will move to
x(t+K) = arg maxx Q̃(h(t),x,y(t), ω(t)|φ(t)).

4. If E(t) < ε or η(t) ≥ τ , x̃ = x(t) and q(t) = r(t);
Otherwise, set x̃ = x(t+K), and
q(t) = r(t) + γmaxx Q̃(h(t),x,y(t), ω(t)|φ(t)).

5. Train the parameter φ of the value function Q̃ using a
neural network, to minimize the loss function:
φ(t+ 1) = arg minφ[q(t)− Q̃(h(t), x̃,y(t), ω(t)|φ)]2.

6. Update the value function to be Q̃(·|φ(t+ 1)).
C. Update onboard energy E(t+1) = E(t)−p(Θ(t), vr(t))∆T .

Until E(t) < ε.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a 3D urban environment
that consists of two streets, four buildings, and trees that can
obstruct mmW signals. As shown in Fig. 2, each building is of

Fig. 2: Illustration of the considered deployment environment for
our simulations.
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Fig. 3: Average data rate per time slot of the BS-IR-UE link and the
average LOS probability of the IR-UE link.

dimensions 40 m × 40 m × 16 m, the street width is 15 m, and
each tree, distributed randomly on the street side, has a crown
radius of 2 m. The UE swings back and forth with respect to
a human user, whose moving route is modeled by an MDP
with a random destination. The BS-UE channel is blocked
persistently by buildings. The path loss of mmW transmissions
is based on the UMi-Street Canyon model [17], and the mmW
multi-input-multi-output channel is based on [18]. The carrier
frequency is set to be 30 GHz, the BS transmit power is 40
dBm, with b = 0.1 GHz, N = 16, M = 64, V max

r = 20 m/s,
Ve = 1 m/s, a = 0.8, κ = 60%, ∆T = 0.1 s, τ = 5 dB, and
γ = 0.1. The planar antenna array with 4× 4 IR components
and 8 × 8 antennas are equipped on the BS and the UAV-
IR, respectively. For simplicity, in our simulations, we assume
a constant altitude for the UAV-IR. In order to examine the
efficiency of the UAV-IR with an RL-based deployment, two
other IRs are introduced in our simulations: a static IR placed
on the top of a building near the crossing with a height of 16
m, and a UAV-IR without RL, which moves towards the UE’s
latest location, every time downlink blockage occurs.

Fig. 3 shows the average data rate of the BS-IR-UE link,
as the UAV’s height increases from 20 to 100 m. At an
altitude of 20 m, for both scenarios (with or without RL),
the UAV-IRs yield a significant improvement in average data
rate, compared to the static case. However, as the altitude
increases, the performance of UAV-IR decreases due to the
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harvesting power, with a fixed UAV height at 40 m.

increasing path loss at the BS-IR-UE channels. At a higher
elevation, although it is more likely to have a LOS link, the
mmW channel attenuation becomes more severe as the BS-
UAV and UAV-UE distances increase. As a result, when the
height exceeds 100 m, the performance of UAV-IR is similar
to the static case. Compared with the RL-based deployment,
the lower data rate of the UAV-IR with no RL is caused by
the frequent movement, due to its short-sighted deployment
strategy. From Fig. 3, we can also see that a static IR results
in a LOS probability lower than 5%. Owing to mobility,
the UAV-IR with the RL-based deployment yields a LOS
probability over 90%, while the UAV-IR with no RL shows a
probability above 70%. The performance improvement of the
learning-based UAV-IR over the UAV with no RL is due to
the prediction of the UE’s movement and the estimation of
each location over a long term.

Fig. 4 shows that the average data rate of the BS-IR-UE link,
at a UAV height of 40 m, as the BS transmit power increases
from 1 to 20 W. For a lower transmit power, the downlink
SNR of the UAV-reflected channel will be smaller than the
threshold τ , which results in a zero data rate. In this case,
although the downlink channel states of UAVs are better than
the static IR, the performance of the three cases is similar. As
the BS transmit power increases, the data rates increases in all
scenarios. However, the downlink rates of UAV-IRs increase
much faster than the static IR. Moreover, due to a higher LOS
probability, the data rate of the RL approach increases faster
than the UAV-IR with no RL. From Fig. 4, we can also see that,
as the BS transmit power increases, the RF energy harvested
by the UAV-IR increases up to 1 mW, which is adequate for
IR to self-power without drawing any energy from the UAV.

V. CONCLUSION

In this paper, we have proposed a novel RL-based approach
to enable an efficient deployment of the UAV-IR in serving
the downlink mmW transmission to a mobile outdoor UE,
with energy harvesting in the IR. To maintain a downlink

LOS channel, the propagation environment is modeled, via
Q-learning and neural networks, to optimize the location and
reflection coefficient of the UAV-IR, such that the downlink
communication capacity can be maximized. Simulation results
show a significant advantage of using a UAV-IR compared to
a static IR, in terms of the average data rate and the achievable
downlink LOS probability. The results also show that the RL-
based deployment of the UAV-IR further improves the network
performance, relative to a UAV-IR without learning. Moreover,
the RF energy harvested from mmW beamforming signals is
shown to be sufficient to power the IR for signal reflections.
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